Acid Gas Removal Options for Minimizing Methane Emissions

Lessons Learned from Natural Gas STAR

Occidental Petroleum Corporation and California Independent Petroleum Association

Producers Technology Transfer Workshop Long Beach, California August 21, 2007

epa.gov/gasstar

NaturalGas

Acid Gas Removal: Agenda

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion

Methane Losses from Acid Gas Removal

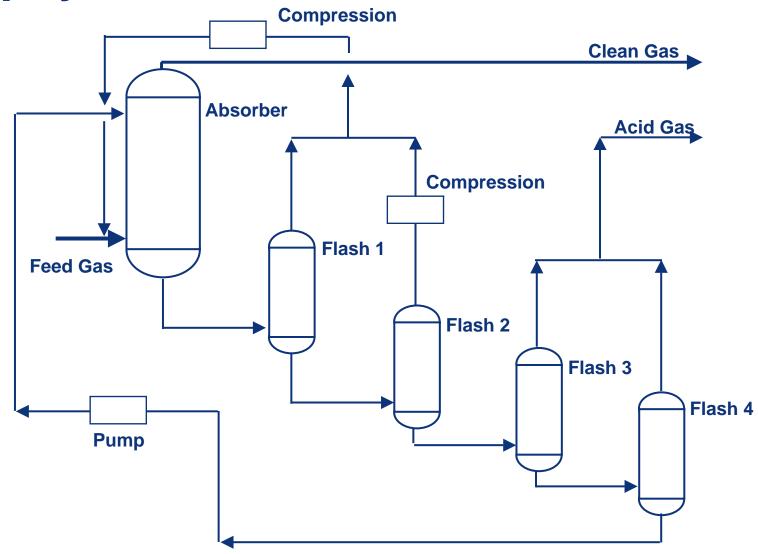
- There are 287 acid gas removal (AGR) units in the natural gas industry¹
 - Emit 634 million cubic feet (MMcf) annually¹
 - 6 thousand cubic feet per day (Mcf/day) emitted by the average AGR unit¹
 - Most AGR units use an amine process or SelexolTM process
 - Several new processes remove acid gas with lower methane emissions and other associated benefits

What is the Problem?

- 1/3 of U.S. gas reserves contain carbon dioxide (CO₂) and/or nitrogen (N₂)¹
- Wellhead natural gas may contain acid gases
 - Hydrogen sulfide (H₂S), CO₂ are corrosive to gathering/boosting and transmission lines, compressors, pneumatic instruments, and distribution equipment
- Acid gas removal processes have traditionally used an aqueous amine solution to absorb acid gas
- Amine regeneration strips acid gas (and absorbed methane)
 - ♦ CO₂ (with methane) is typically vented to the atmosphere, flared, or recovered for enhanced oil recovery (EOR)
 - H₂S is typically flared in low concentrations or sent to sulfur recovery

Typical Amine Process CO₂ / methane to atmosphere / flare / thermal oxidizer **Sweet** H₂S to Gas sulfur plant or **Lean Amine** Stripper flare **Diethanol** Condenser Amine Contactor (DEA) (Absorber) **Reflux Pump** Reboiler **Sour Gas** Fuel/Recycle **Rich Amine Heating Medium** Flash Tank Exchanger **Booster Pump**

Filter



Methane Recovery - New Acid Gas Removal Technologies

- GTI & Uhde Morphysorb® Process
- Kvaerner Membrane Process
- Guild / Engelhard Molecular Gate® Process
- Primary driver is process economics, not methane emissions savings
- Reduce methane venting by 50 to 100%

Morphysorb® Process

Morphysorb® Process

- Morphysorb® absorbs acid gas but also absorbs some methane
 - Methane absorbed is 66% to 75% lower than competing solvents¹
- Flash vessels 1 & 2 recycled to absorber inlet to minimize methane losses
- Flash vessels 3 & 4 at lower pressure to remove acid gas and regenerate Morphysorb®

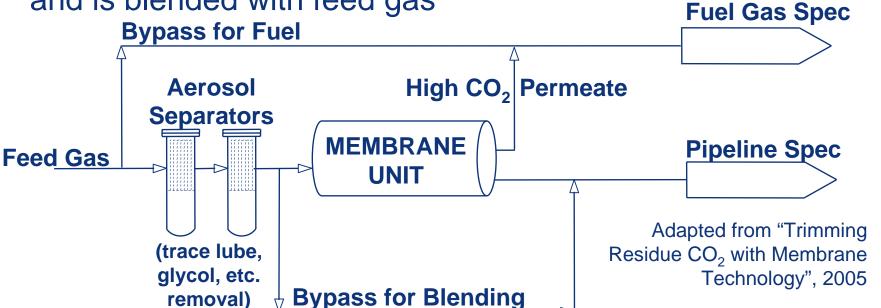
Is Recovery Profitable?

- Morphysorb® can process streams with high (>10%) acid gas composition
- Morphysorb® has a 30% to 40% operating cost advantage over DEA or Selexol^{TM 2}
 - 66% to 75% less methane absorbed than DEA or SelexolTM
 - About 33% less total hydrocarbons (THC) absorbed²
 - Lower solvent circulation volumes
- At least 25% capital cost advantage from smaller contactor and recycles²
- Flash recycles 1 & 2 recover about 80% of methane that is absorbed¹

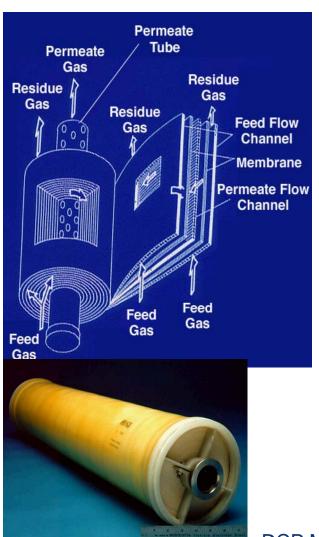
^{1 –} Oil and Gas Journal, July 12, 2004, p 57, Fig. 7

^{2 -} GTI

Industry Experience - Spectra Energy


- Kwoen plant does not produce pipeline-spec gas
 - Separates acid gas and reinjects it in reservoir
 - Frees gathering and processing capacity further downstream
- Morphysorb® retrofitted to a process unit designed for other solvent
- Morphysorb® chosen for acid gas selectivity over methane
 - Less recycle volumes; reduced gas compressor horsepower

Kvaerner Membrane Process


- Membrane separation of CO₂ from feed gas
 - Cellulose acetate spiral wound membrane
- Migh CO₂ permeate (effluent or waste stream) exiting the membrane is vented or blended into fuel gas

Low CO₂ product exiting the membrane exceeds pipeline specand is blended with feed gas
Fuel Gas Specand

Kvaerner Membrane Technology

- ♦ CO₂ (and some methane) diffuse axially through the membrane
- Metallic High-CO₂ permeate exits from center of tube; enriched product exits from outer annular section
- One application for fuel gas permeate
 - Methane/CO₂ waste stream is added with fuel gas in a ratio to keep compressor emissions in compliance
- Design requirements
 - Upstream separators remove contaminants which may foul membrane
 - Line heater may be necessary

11

Industry Experience – DCP Midstream

- Kvaerner process installed at Mewborn processing plant in Colorado, 2003
- Problem: sales gas CO₂ content increasing above the 3% pipeline spec

Evaluated options

- Blend with better-than-spec gas
 - Not enough available
- Use cryogenic natural gas liquids (NGL) recovery to reject CO₂
 - Infrastructure/capital costs too high
- Final choice: membrane or amine unit

DCP Midstream 12

Industry Experience - Continued

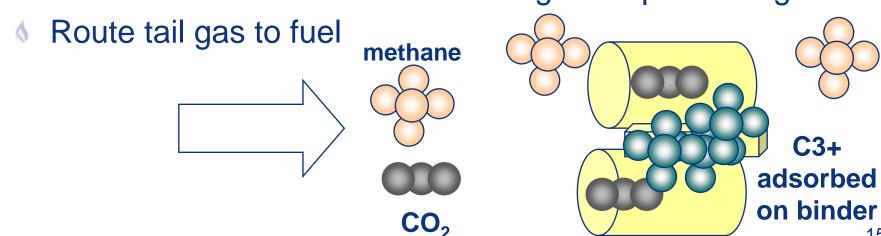
- Membrane chosen for other advantages; zero emissions is added benefit
 - 65% less capital cost than amine unit
- mina)
- About 10% operating cost (compared to amine)
- Less noise
- About 10% operator man hours (compared to amine)
 - Less additional infrastructure construction

Less process upsets

- 1/3 footprint of amine unit
- Typical process conditions

Flow Into Membrane	Membrane Residue (Product)	Membrane Permeate	
22.3 MMcf/day	21	1.3	
70 to 110 degrees Fahrenheit	70 to 110	70 to 110	
800 to 865 psia	835	55	
3% CO ₂	2%	16%	
84% C ₁	89%	77%	
13% C ₂ +	9%	7%	
~0% H ₂ O	~ 0%	~0%	
~0% H ₂ S	~0%	~0%	

Is Recovery Profitable?


Costs

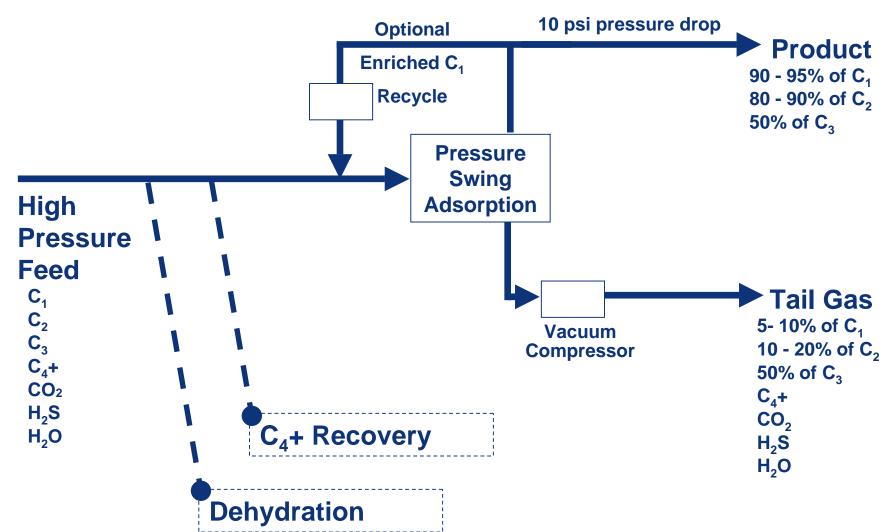
- Conventional DEA AGR would cost \$4.5 to \$5 million capital, \$0.5 million operation and maintenance (O&M) per year
- Kvaerner Membrane process cost \$1.5 to \$1.7 million capital, \$0.02 to \$0.05 million O&M per year
- Optimization of permeate stream
 - Permeate mixed with fuel gas, \$5/Mcf fuel credit
 - Only installed enough membranes to take feed from >3% to >2% CO₂, and have an economic supplemental fuel supply for compressors
- In operation since 2005
- Offshore Middle East using NATCO membrane process on gas with 90% CO₂, achieving pipeline spec quality

Methane Recovery - Molecular Gate® CO₂ Removal

- Adsorbs acid gas (CO2 and H2S) in fixed bed
- Molecular sieve application selectively adsorbs acid gas molecules of smaller diameter than methane
- Bed regenerated by depressuring

Molecular Gate® Applicability

- Lean gas
 - Gas wells, coal bed methane
- Associated gas
 - Tidelands Oil Production Company
 - 1.4 MMcf/day


 - Water saturated, rich gas
 - Design options for C₄+ in tail gas stream
 - Meavy hydrocarbon recovery before Molecular Gate[®]
 - Recover heavies from tail gas in adsorber bed
 - Use as fuel for process equipment

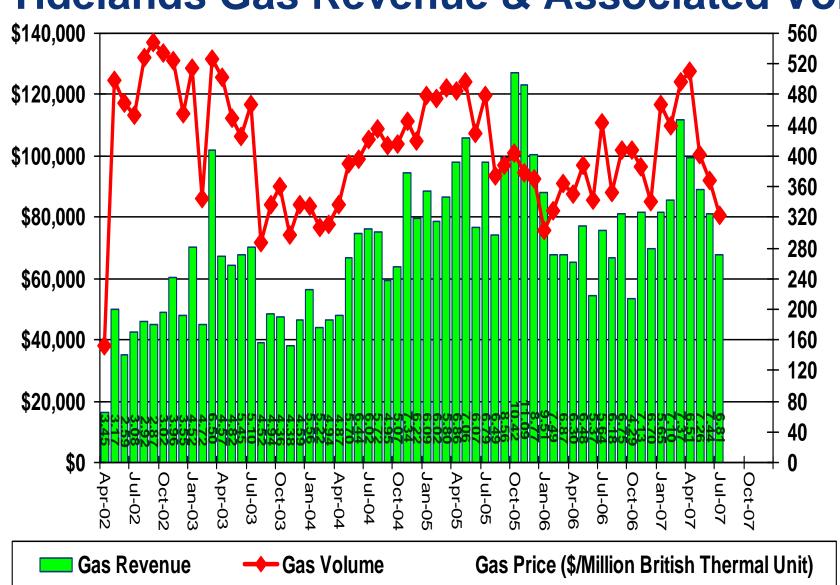
Coal bed methane System in Illinois www.moleculargate.com

Molecular Gate® CO₂ Removal

Industry Experience - Tidelands Molecular Gate® Unit

- First commercial unit started in May 2002
- Process up to 1.4 MMcf/day
- No glycol system is required
- Heavy hydrocarbons and water removed with CO₂
- Tail gas used for fuel is a key optimization: no process venting
- ♦ 18% to 40% CO₂ removed to pipeline specifications (2%)
- Eliminated flaring

Molecular Gate Performance at Tidelands


	Design Feed	Actual Feed	Design Product	Actual Product
Flow, MMcf/day	1.0	1.4	0.52	0.54
Pressure, psig	65	70	63	68
Temperature, F	60-80	60-80	60-80	60-80
Composition, Mol %				
C1	71.25	48.35	95.09	94.17
02	400 ppm	800 ppm	700 ppm	1500 ppm
N2	2.18	1.34	3.74	2.40
CO2	18.82	37.58	0.19	1.90
C2	2.35	2.96	0.90	0.68
C3	2.12	3.77	0.20	0.03
C4	1.75	3.11	-	-
C5	0.76	1.40	-	-
C6+	0.72	1.41	-	-
H2O	saturated	saturated	-	-

F = Fahrenheit psig = pounds per square inch, gauge ppm = parts per million

throughput

Tidelands Gas Revenue & Associated Volume

Is Recovery Profitable?

- Molecular Gate® costs are 20% less than amine process
 - 9 to 35 ¢ / Mcf product depending on scale
- Fixed-bed tail gas vent can be used as supplemental fuel
 - Eliminates venting from acid gas removal
- Other Benefits
 - Allows wells with high acid gas content to produce (alternative is shut-in)
 - Can dehydrate and remove acid gas to pipeline specs in one step
 - Less operator attention

Other Molecular Gate Applications

- Nitrogen removal from natural gas
- Dew point control by heavy hydrocarbon and water removal
- Removal of C₂ (<6%), C₃+ (<3%) and C₆+ (<0.2%) for California Air Resources Board compressed natural gas</p>
- Removal of heavy hydrocarbons from CO₂ in amine plant vents to eliminate flaring

Comparison of AGR Alternatives

	Amine (or Selexol TM) Process	Molecular Gate® CO ₂	Morphysorb® Process	Kvaerner Membrane
Absorbent or Adsorbent	Water & Amine (Selexol TM)	Titanium Silicate	Morpholine Derivatives	Cellulose Acetate
Methane Savings Compared to Amine Process		Methane in tail gas combusted for fuel	66 to 75% less methane absorption	Methane in permeate gas combusted for fuel
Regeneration	Reduce Pressure & Heat	Reduce Pressure to Vacuum	Reduce Pressure	Replace Membrane about 5 years
Primary Operating Costs	Amine (Selexol TM) & Steam	Electricity	Electricity	Nil
Capital Cost	100%	<100%	75%	35%
Operating Cost	100%	80%	60% to 70%	<10%

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies an practices
- Actual costs and benefits